

1 Plan of Study

2 To be submitted by the International Elk-Kootenai/y Watershed Study Board 3 To the International Joint Commission

4 January 31, 2025

6 Executive Summary

8 In March 2024, the International Joint Commission (IJC) received a Reference under the Boundary
9 Waters Treaty from the governments of the United States and Canada, in partnership with the Ktunaxa
10 Nation, asking the IJC to carry out certain actions to address the impacts of transboundary water
11 pollution in the Elk-Kootenai/y watershed. In September 2024, the IJC appointed the International Elk-
12 Kootenai/y Watershed Study Board (IEKWSB) and then directed the IEKWSB to conduct transparent and
13 coordinated transboundary data and knowledge sharing; share, synthesize, and analyze data and
14 information to support a common understanding of pollution within the Kootenai/y watershed and the
15 impacts of that pollution on people and species; and report results and make recommendations in a
16 transparent and publicly available format.

17 The IEKWSB has developed a Plan of Study which describes how it will work with a Council of Indigenous
18 Knowledge Holders (CoIKH), with the support of a Study Management Team to accomplish the Directive
19 from the IJC. The IEKWSB will establish four Technical Working Groups (TWGs) to provide the technical
20 foundation for its work, with advice from two Advisory Groups and review by an Independent Review
21 Group established by the IJC. The TWGs will be established to assist in carrying out the work under this
22 Directive to *“support a common understanding of pollution within the Elk-Kootenai/y watershed. This*
23 *includes the impacts of that pollution on people and other species”* focused on the following four topics:

- 24 • Water Quality Status and Trends
- 25 • Impacts to Human Health and Well-Being
- 26 • Impacts to Ecosystems, Including Cumulative Effects
- 27 • Mitigation Efforts and Activities and Available Tools

28 Given that Ktunaxa knowledge and language flows through all TWG themes, the recommendation from
29 the CoIKH is that there be interaction across the CoIKH and each of the TWGs with the option for
30 support from staff from Ktunaxa governments as needed and available within the TWGs.

31 As required by the Directive, the IEKWSB will provide the IJC with an interim report on its progress in
32 September 2025 and a final report in September 2026 which will include a Phase 2 Plan of Study to
33 follow up on this initial study. The Board is requesting \$4.9 million in funding to accomplish the
34 Directive.

36 **Contents**

37	1	Preamble	4
38	2	Acknowledgements.....	4
39	3	Introduction	4
40	3.1	Clarify relationships	7
41	3.2	Watershed Characteristics	8
42	3.3	Human Activities and Associated Stressors	9
43	4	Study Goals, Objectives, and Deliverables	11
44	5	Organization of the Study and Governance Structure	12
45	5.1	IEKWSB (Study Board).....	13
46	5.2	IEKWSB Co-Chairs	14
47	5.3	Council of Indigenous Knowledge Holders	14
48	5.4	Study Management Team.....	14
49	5.5	Technical Working Groups	16
50	6	Engagement	16
51	6.1	Engagement Objectives	16
52	6.1.1	Engagement Principles	17
53	6.1.2	Engagement Methods and Approaches	17
54	6.2	Advisory Groups	17
55	6.2.1	Public Advisory Group	18
56	6.2.2	Industry Advisory Group	18
57	6.2.3	Council of Governments Advisory Group.....	19
58	6.3	Communications.....	19
59	7	Technical Working Groups.....	19
60	7.1	Principles for the TWGs	20
61	7.2	TWG Framework.....	21
62	7.3	TWG Themes and Objectives.....	22
63	7.3.1	Water Quality Status and Trends.....	23
64	7.3.2	Impacts to Human Health and Well-Being.....	23
65	7.3.3	Impacts to Ecosystems, Including Cumulative Effects.....	23
66	7.3.4	Mitigation Efforts and Activities and Available Tools	23
67	7.4	Interaction between the Council of Ksanka & Ktunaxa Knowledge Holders and the Technical Working Groups	24

DRAFT PLAN OF STUDY

69	8	Data Management Approach.....	24
70	9	Study Technical Reviews.....	25
71	9.1	Internal Review.....	25
72	9.2	Agency Technical Review	25
73	9.3	Independent Review Group (IRG).....	26
74	10	Study Board Deliverables	26
75	11	Budget and Timelines.....	26
76	12	References.....	27
77			
78			

DRAFT

79 **1 Preamble**

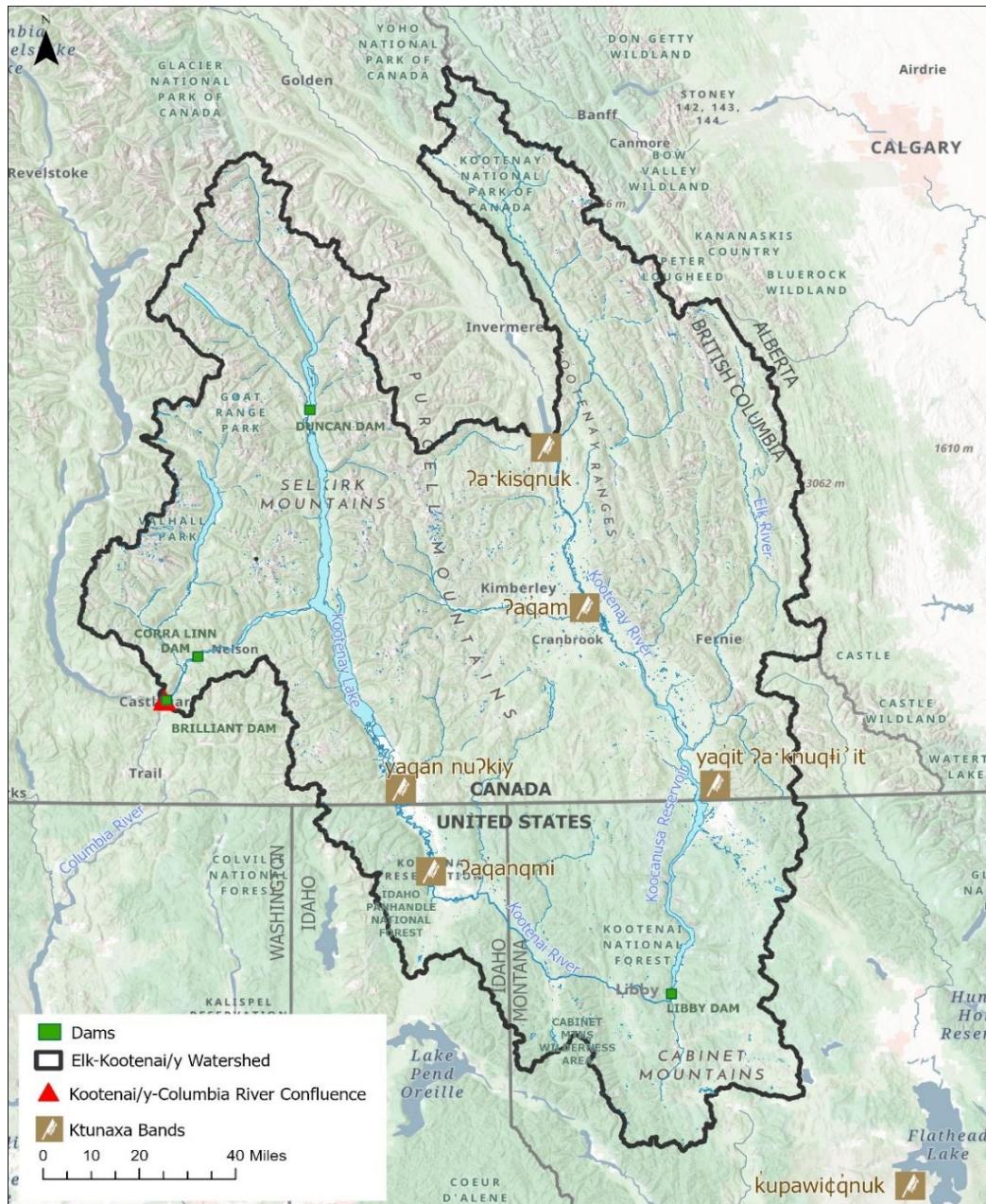
80 As a transboundary water, the Elk-Kootenai/y watershed is subject to the [Boundary Waters Treaty of](#)
81 [1909](#) between Great Britain and the United States which is intended to prevent and resolve disputes
82 over the use of the waters shared by Canada and the United States. The treaty established the
83 International Joint Commission (IJC) to help the two countries carry out its provisions when issues are
84 referred to the IJC by the countries.

85 The Elk-Kootenai/y watershed is defined in this Plan of Study (POS) as the Kootenai/y River flowing
86 through Canada and the United States to its confluence with the Columbia River downstream in Canada,
87 the Elk River sub basin, Koocanusa Reservoir, and Kootenay Lake. Stressors originating in other
88 tributaries will be considered as part of the assessment of the cumulative stress on the watershed as
89 defined in the Directive. The entire watershed is in the unceded territory of the transboundary Ktunaxa
90 Nation and is central to the Ktunaxa Creation Story. The Ktunaxa Creation Story has been passed down
91 orally for generations amongst the Ktunaxa people and elders. Several websites share a short rendition
92 of the Ktunaxa Creation Story (for example: [Creation Story : Ktunaxa Nation](#)) but the telling of the story
93 in its entirety takes days.

94 On March 8th, 2024, the Governments of the United States and Canada, joined by the transboundary
95 Ktunaxa Nation, sent letters to the International Joint Commission (IJC), that included a shared ["Proposal](#)
96 [to Address Transboundary Water Pollution in the Elk-Kootenai/y Watershed."](#) The proposal was
97 developed in partnership by Ktunaxa, Canada, and the United States, with support from the Province of
98 British Columbia and the states of Montana and Idaho. In accordance with Article IX of the Boundary
99 Waters Treaty of 1909, the Governments of the United States and Canada requested the IJC to take
100 actions as described in the [Preamble](#) of their joint Proposal with the Transboundary Ktunaxa Nation.

101
102 As per the Proposal, the Nations requested the "IJC to convene experts and knowledge holders in an IJC
103 Study Board to conduct transparent and coordinated transboundary data and knowledge sharing", and
104 to develop a Plan of Study (POS).

105 **2 Acknowledgements**


106 This POS was written by the International Elk-Kootenai/y Watershed Study Board (IEKWSB) and Study
107 Management Team (SMT) and contributions from the Council of Indigenous Knowledge Holders (CoIKH) -
108 Council of Ksanka & Ktunaxa Knowledge Holders (CoIKKH). The members of the IEKWSB were appointed
109 by the IJC to provide the expertise needed to develop and guide the scientific activities and tasks
110 required to complete this POS. Although IEKWSB members are currently or may have formerly been
111 employed by government agencies in both Canada and the United States, all members have agreed to
112 serve objectively in their personal and professional capacities, and not as representatives of their current
113 or former agencies, countries, organizations, or special interest groups.

114 **3 Introduction**

115 The Kootenai/y Basin covers parts of southeastern British Columbia, northwestern Montana, and
116 northern Idaho, all of which are part of ?amak?is Ktunaxa (Ktunaxa Territory) (Figure 1). The Elk-
117 Kootenai/y watershed Reference is the first Reference to the IJC that the two federal governments have

DRAFT PLAN OF STUDY

118 developed in partnership with First Nations and Indigenous groups, with signatories from Canada, the
 119 United States, and the transboundary Ktunaxa Nation¹. This is particularly important because of the
 120 geography and history of the watershed.

121

122 *Figure 1. The Elk-Kootenai/y watershed, forming the Study Area*

123

¹ For the purposes of this document, the Ktunaxa Nation is defined to include the six Tribal and First Nation governments: Pa-kisqnuuk, Paqam, yaqan nu?kiy, Yaqit Pa-knuqhi'it (Tobacco Plains Indian Band), Confederated Salish and Kootenai Tribes (Ksanka Band), and Paqanqmi (Kootenai Tribe of Idaho).

124 According to the Ktunaxa Creation Story, the Kootenai/y River is central to and woven into the heart of
125 ?amak?is Ktunaxa (Ktunaxa Territory). The headwaters of the Kootenay River flow from the Ktunaxa land
126 district of kyawač ?amak?is (Land of the Spruce Goose; known as Kootenay National Park in
127 southeastern British Columbia) and the ?akisq̄nuk First Nation, before flowing south through
128 ?aknuq̄tūfar̄ ?amak?is (Land of the Eagle) and the First Nation of ?āqam. From there it receives flows
129 from the Elk River (from qukin ?amak?is (Land of the Raven)) and flows downstream through ?āmna
130 ?amakis (Land of the Wood Tick) and the First Nation of Yaq̄it ?ā-knuq̄tīit.

131 The river continues its journey through ?amak?is Ktunaxa (Ktunaxa Territory) before crossing the
132 international boundary between Canada and the United States, into Montana. The Kootenai River then
133 flows through the Ktunaxa territories of K'upawičq̄nuk (Ksanka Band, Confederated Salish and Kootenai
134 Tribes of the Flathead Indian Reservation in Montana) and ?āqanq̄mi (Kootenai Tribe of Idaho near
135 Bonners Ferry, Idaho) before turning north and crossing the international boundary back into Canada,
136 flowing through the First Nation of yaqan nu?kiy and into Kootenay Lake.

137

138 *[under discussion with the Council of Indigenous Knowledge Holders - Council of Ksanka & Ktunaxa
139 Knowledge Holders a map of Ktunaxa land districts may be included here for the final Plan of Study]*

140

141 In October 2012, the transboundary Ktunaxa requested the Elk and Kootenai/y Rivers be referred to the
142 IJC under Article IV of the Boundary Waters Treaty whereby “it is further agreed that the waters herein
143 defined as boundary waters and waters flowing across the boundary shall not be polluted on either side
144 to the injury of health or property on the other.” Concerns about reduced water quality and quantity
145 from ongoing and expanding coal mine operations and the implications to wildlife and fish populations
146 as well as impacts to human health were noted to be of cultural, historic, and subsistence importance
147 and concern to the transboundary Ktunaxa. Concerns for more impacts resulting from potential mine
148 expansions prior to any mitigation planning or demonstrated mitigation efficacy were also highlighted.

149 British Columbia issued a Ministerial Order in 2013 for the development of an Area Based Management
150 Plan to stabilize and reduce contaminants from the effluent of coal mines in the Elk Valley. The Order
151 named increasing concentrations of selenium, cadmium, nitrate, sulphate, and deposition of calcite in
152 the aquatic receiving environment. Many of these parameters exceeded provincial water quality
153 guidelines and were suspected of causing impairment to ecosystem health ([Ministerial Order 113](#)).
154 Through the approval of this Plan, commitments were made by the province (in partnership with the
155 state of Montana) to create a Lake Koocanusa Monitoring and Research Working Group (LKMRWG) to
156 develop a reservoir-specific selenium target. The LKMRWG was set up in 2015 and was active until 2021.

157 In 2017, a second request for a federal-led international response was sent by the transboundary
158 Ktunaxa to both Federal Governments due to the narrowly scoped monitoring and research (a single
159 water quality contaminant), and concerns for fish and wildlife due to increasing trends in water
160 pollutants, challenges in mitigations, and more coal mine development. In 2019, in response to elevated
161 fish tissue levels of selenium, the transboundary Ktunaxa again raised concern with the water quality and
162 selenium impacts, requesting BC set a lower limit to protect aquatic life while the LKMRWG completed
163 their work.

164 The outcome of the work done by the LKMRWG resulted in Ktunaxa leadership in British Columbia
165 approving a site-specific selenium water quality objective of 0.85 µg/L (total Se) in the British Columbia
166 portion of Koocanusa in September 2020 and Montana setting a selenium criterion for Koocanusa of 0.8
167 µg/L (dissolved Se) south of the International Boundary. The Montana criterion was subsequently
168 approved by the United States Environmental Protection Agency (USEPA) for Clean Water Act purposes
169 in February 2021. This created a disconnect between water quality guidelines as British Columbia's
170 guideline is 2.0 µg/L (total Se). Following this, Ktunaxa leadership again sent letters requesting a
171 reference to the IJC in February and December 2021. Adding to the complexity, the United States
172 Environmental Protection Agency selenium criterion for downstream of Koocanusa Reservoir in the
173 Kootenai River is 3.1 µg/L (total Se).

174 On March 24, 2023, the US and Canadian governments released a joint statement announcing a
175 commitment to "reach an agreement in principle by this summer to reduce and mitigate the impacts of
176 water pollution in the Elk Kootenay watershed, in partnership with Tribal Nations and Indigenous
177 Peoples, in order to protect the people and species that depend on this vital river system."

178 The closure of the LKMRWG was announced by BC and Montana in December 2023, noting that the
179 feedback in 2020 from participants in the group had outlined more work was needed in inclusive
180 governance and a broader geographic region (the watershed rather than just the Reservoir). The
181 transboundary work started through this group was recognized to be transitioning to a new
182 transboundary forum as indicated by the Federal Governments of Canada and the United States.

183 On March 8, 2024, the IJC received a Reference under the Boundary Waters Treaty related to the March
184 24, 2023 statement by the US and Canadian governments, in partnership with the Ktunaxa Nation,
185 asking the IJC to carry out certain actions to address the impacts of transboundary water pollution in the
186 Elk-Kootenai/y watershed. The Reference was made under Article IX. This is the first Reference to the IJC
187 that the two federal governments have developed in partnership with First Nations and Indigenous
188 groups.

189 The Reference included a request to the IJC to convene experts and knowledge holders in an IJC IEKWSB
190 by September 8, 2024, to conduct transparent and coordinated transboundary data and knowledge
191 sharing; share, synthesize, and analyze data and information to support a common understanding of
192 pollution within the Kootenai/y watershed and the impacts of that pollution on people and species;
193 report results and make recommendations in a transparent and publicly available format; and broadly
194 engage with federal, provincial, state, First Nations, Métis, and Tribal governments, industry, local
195 communities, organizations, the public and others who live, work or have interests in the watershed, as
196 well as other IJC boards working in the watershed or on similar issues.

197 3.1 Clarify relationships

198 The IEKWSB is aware of two other regionally important, binational/bilateral efforts: 1) the IJC's
199 International Kootenay Lake Board of Control (IKLBC) work and 2) the United States and Canada
200 Columbia River Treaty (CRT) negotiations. The work of the IEKWSB does not encompass the ongoing
201 work related to either of these other efforts. The mandate of the IKLBC is complementary to (but distinct
202 from) that of the IEKWSB. The IKLBC was created by an IJC Order in 1938 to oversee operations at Corra
203 Linn Dam to store up to six feet of water in Kootenay Lake and to excavate the lake outlet at Grohman
204 Narrows. The IKLBC operates under its 2016 Directive. IJC jurisdiction does not encompass the Columbia

205 River Treaty work. Canada and the United States reached an agreement-in-principle (AIP) in July 2024 to
206 extend CRT operations following six years of negotiations. Created in 1961 and ratified in 1964 partially
207 in response to the 1948 flood, the CRT provided some flood mitigation and power creation for both
208 countries and resulted in the construction of four major dams (Duncan, Hugh L. Keenleyside and Mica in
209 Canada and Libby in the United States) initially, with several more built since.

210 [3.2 Watershed Characteristics](#)

211 The Kootenai/y River basin is an international watershed and represents the third largest tributary of the
212 Columbia River; of the total basin area of 19,300 miles² (49,987 km²), 14,500 miles² (37,555 km²) are in
213 British Columbia, Canada, with 3,750 miles² (9,712 km²) in Montana and 1,150 miles² (2,978 km²) in
214 Idaho in the United States. The Kootenai/y River is about 485 miles (775 km) long with 165 miles (266
215 km) or a little more than one-third of its length in the United States (adapted from ICERB, 1959 and
216 Knudson, 1994). The watershed is largely undeveloped, with only 0.35% of the basin in development,
217 0.6% of the drainage area in agricultural use, and <0.25% of the basin currently under development for
218 mining with all of that in the Elk River basin (Stickney et al., 2021; Table 1).

219 The Continental Divide forms much of the eastern watershed boundary, with the Selkirk Mountains on
220 the west, the Cabinet Range to the south and the Purcell Mountains in the center of the "J"-shaped flow
221 (Figure 1). The headwaters of the Kootenay River are in the Rocky Mountains about 40 miles (64 km)
222 west of Banff, Alberta, and flows south into Koocanusa Reservoir which is located at the Montana-British
223 Columbia border. Libby Dam, located on the mainstem Kootenai River near Libby, Montana, creates
224 Koocanusa Reservoir. The dam was authorized by the U.S. Congress in the 1950 Flood Control Act for
225 hydropower and flood protection, and construction was completed in 1973. Koocanusa Reservoir
226 extends 90 miles (145 km) upstream into British Columbia, Canada. It has an average depth of 125 feet
227 (38 meters), a maximum depth of 348 feet (106 meters), and a total storage capacity of 5,869,000 acre-
228 feet (7.2 km³) of water. Libby Dam is the fourth dam constructed under the Columbia River Treaty
229 between the United States and Canada and it is operated by the U.S. Army Corps of Engineers. After
230 leaving Libby Dam, the Kootenai River flows west through Montana and Idaho before flowing north into
231 Kootenay Lake in British Columbia. The river finally flows southwest from Kootenay Lake to enter the
232 Columbia River near Castlegar, B.C.

233 The Kootenay River flows are largely driven by the winter accumulation of snow in the adjacent
234 mountain systems, with the slopes of mountain peaks 7,000 to 12,000 feet (2,134 to 3,658 m) in
235 elevation. Generally, the elevation of the mountains is higher in the northern part of the basin than in
236 the southern part. Winter flows are ordinarily low, but as spring progresses into summer with warmer
237 temperatures, these accumulated snows of the preceding winter melt and cause the spring flood.
238 Ordinarily the rise is gradual, beginning in April and continuing until late in May or June, when maximum
239 stage occurs.

240 Historically, the average annual discharge of the Kootenay River to the Columbia River was 868 m³/s
241 (30,650 cfs); and 87% of the inflow to Koocanusa Reservoir (301 m³/s, 10,615 cfs) comes from three
242 Canadian rivers, the Kootenai, Elk and the Bull. Reductions in snowpack, earlier spring runoff, warming
243 water temperatures, and reductions in annual stream flows are already evident in the Columbia River
244 (reviewed in Chaffin et al., 2024). Warming temperatures and changes from snow-dominated to rain-
245 dominated precipitation and changes in timing will impact flow, as well as power and irrigation demands.

246 Changing hydroclimatic conditions in the basin and increasing variability means that there is uncertainty
 247 in trying to understand transboundary water pollution dynamics.

248 *Table 1. Land cover in the Kootenai/y River watershed organized by 8-digit hydrologic unit code (HUC-8) watersheds (modified from Stickney et al., 2021).*

HUC-8 watershed	Area (km ²)	Agricultural (km ²)	Developed (km ²)	Mining (km ²)
Kootenay River Headwaters	5,390	5.15	0	0
Upper Kootenay River	6,595	61.23	53.36	0
Middle Kootenai	9,533	43.15	56.44	0
Elk	4,414	36.97	10.17	121.57
Lower Kootenai	9,693	151.29	36.06	0
Total¹	50,074	302.85	175.09	121.57

250 ¹Total includes data for Fisher, Yaak, Moyie, Duncan, and Slocan tributaries. Those HUCs not shown in Table.

251 3.3 Human Activities and Associated Stressors

252 The Study Area has a variety of human activities within it that are typical for the region. Industrial
 253 activities tend to be focused on natural resource use and extraction. Forestry and mining have
 254 historically been and continue to be predominant industries in the Study Area. Recently, tourism,
 255 residential development, transportation, and recreational activities have increased. Current human
 256 activities with the largest footprint and the most extensive activity are forestry, metallurgical coal
 257 mining, hydroelectric dams, and linear development (roads, electrical transmission lines, and pipelines).

258 Logging and associated road building have occurred in many of the lower elevation valleys and on higher
 259 elevation ridges on both private and public lands. In the Canadian portion of the Study Area, roadless
 260 areas larger than 5,000 acres (2,023 ha) are uncommon except within national and provincial/state parks
 261 and wilderness areas.

262 Clear-cutting is the predominant method of forest harvesting, where all the economically useful trees
 263 are removed at the same time. This is particularly true on private forest lands. There is a relatively high
 264 proportion of private land holdings in the Elk Valley. Other forest industry activities include the
 265 Skookumchuk pulp mill, which discharges to the Kootenay River about 43 miles (70 km) upstream of the
 266 northern end of the Koocanusa reservoir.

267 In the U.S. portion of the Study Area, ownership and forest management is predominantly the United
 268 States Forest Service (specifically the Kootenai National Forest and Idaho Panhandle National Forest),
 269 which manages resources for multiple uses (clean water, healthy ecosystems, timber, livestock forage,
 270 minerals and energy, and recreation). Timber harvest in the U.S. portion is a blend of road-based pre-
 271 commercial thinning, fuels management, clear cutting, intermediate, and seed tree harvest. Significant
 272 roadless areas exist including the Cabinet Mountains Wilderness Area (94,272 acres, 38,150 hectares),
 273 with an additional 28% of the Kootenai National Forest still in roadless state. Management of the forest,
 274 especially the remaining roadless areas, must consider grizzly bears which are listed as endangered
 275 under the U.S. Endangered Species Act. There are only a handful of smaller timber mills remaining in the
 276 U.S. portion of the Study Area.

277 Environmental stressors associated with the forestry industry and associated roads include changes in
 278 the timing, volume and intensity of water flows off logged areas (with associated release and transport
 279 of sediments and other substances of concern to streams), nutrient loss, declines in terrestrial and

280 aquatic habitat suitability for certain species of wildlife, loss of habitat connectivity, and loss of
281 biodiversity.

282 Metallurgical coal mining is the primary economic driver in Canada's East Kootenay portion of the Study
283 Area and contributes significantly to provincial and national economies. The current gross mine footprint
284 (including reclaimed area) is approximately 58 square miles (122 km²). Environmental stressors
285 associated with metallurgical coal mining include water pollutants such as selenium, nitrates, and
286 sulphates; alterations in groundwater/surface water connections, water flows, and overall water balance
287 due to mine dewatering, water diversions, and water withdrawals; and habitat alterations or destruction
288 due to the creation of open pits, filling of creek valleys with waste rock, erosion, and deforestation.
289

290 Historic mining activities in the Study Area were extensive, due to occurrences of valuable metals such as
291 gold, silver, copper, platinum, and lead. Larger historic mines include the Troy Mine (copper and silver) in
292 the Lake Creek watershed south of Troy, MT and the WR Grace Vermiculite Mine near Libby, MT.
293 Stressors associated with mineral extraction and processing include pollutants such as metals in the Troy
294 Mine tailings, and asbestos in outdoor and indoor air and soils. Remediation of the Troy Mine tailings
295 storage area was declared complete by the current owner of the property in 2022. The vermiculite site
296 was placed on the USEPA Superfund National Priorities List in 2002 and subsequently has undergone
297 extensive remediation to reduce risk to human health to acceptable levels.

298 The production of hydroelectricity is an important industry in the Study Area. The Libby Dam/Koocanusa
299 Reservoir complex is by far the largest human-made structure in the watershed. The Brilliant, Cora Linn
300 and Kootenay Canal dams (all located between Nelson and Castlegar, BC) generate electricity in the
301 portion of the Study Area upstream of the Kootenay River's confluence with the Columbia River.

302 In addition to the power, flood control, and recreational benefits that dams provide to society, dams also
303 have ecological impacts. Dams can fragment a watershed, obstructing fish migration. Dams and
304 reservoirs can change natural water temperatures, water chemistry, river flow, and silt loads. All these
305 changes can affect the ecology and the physical characteristics of the river. These changes may have
306 negative effects on native plants and animals in and around the river. Reservoirs may cover important
307 natural areas (especially low elevation floodplain habitat), agricultural land, or archeological sites. A
308 reservoir and the operation of a dam may also result in the relocation of people, which occurred in the
309 Study Area due to the construction of Libby Dam. The impacts of a dam and reservoir, its operations, and
310 the use of the water can change the environment over a much larger area than the area a reservoir
311 covers.

312 Linear developments of all kinds often follow river valleys in the Study Area, resulting in parallel roads,
313 railroads, pipelines, and electrical transmission lines. River and creek crossings are numerous and not
314 necessarily built with protection of aquatic habitat as a top priority. The Elk Valley Cumulative Effects
315 Management Study found that the primary hazard to fish in the Elk River Basin was road density.
316 Impacts of linear development include erosion (with subsequent sedimentation), blocking of fish
317 migration, removal or degradation of riparian habitat, alteration of flow volume and pattern due to
318 engineered streambank protections such as rip rap, and introduction of pollutants from road surfaces,
319 road de-icing agents, and spills (road, rail and pipeline).

320 Recreation and urban and semi-urban development are increasing in the Study Area. Recreation includes
321 hunting, fishing, hiking, biking, skiing, paddling, recreational driving (including off-highway vehicles),

322 wildlife viewing, photography, camping, horseback riding and packing. Recreation increases human
323 presence, with accompanying disturbances such as overuse of established trails and proliferation of
324 informal trails (with accompanying erosion), increased fishing pressure, improper disposal of human
325 waste leading to water pollution, and introduction of invasive species. Increased urban and semi-urban
326 development (partly in response to increased demand for accommodation for visitors and seasonal
327 residents) is usually in valley bottoms, where impacts on riparian habitats and water quality are already
328 evident.

329 Only a small percentage of the Study Area is agricultural land, much of it used for pasture and forage
330 production. Agricultural development is confined primarily to valley bottoms. Though it utilizes a
331 relatively small area, it has had a large impact on habitats of the mainstem river and tributary mouths
332 because most of the activity occurs in the floodplain. The largest contiguous block of agricultural land is
333 within the Purcell Trench, which extends roughly from Bonners Ferry, Idaho to the river's entry into
334 Kootenay Lake. Agriculture in valley bottoms and floodplains can degrade or eliminate riparian and
335 wetland habitat, introduce water pollutants such as nutrients, pesticides, and pathogens, alter water
336 flows via irrigation withdrawals, and reduce biodiversity of aquatic, semi-aquatic, and terrestrial
337 habitats.

338 All the human activities with associated stressors discussed above can interact with climate change
339 processes and impacts in a cumulative manner. The effects of the various human activities on resources
340 in the watershed indicated in the IJC Reference will be one of the principal goals of discovery in the
341 Study and will be a focus of outputs from the Technical Working Groups (See Section 7).

342 4 Study Goals, Objectives, and Deliverables

343 As per the Elk-Kootenai/y Reference, Proposal, and Directive, the Commission established the IEKWSB to
344 assist the Commission in conducting the work pursuant to the Reference. The objective of the IEKWSB is
345 to assist the Commission in completing its study related duties under the Reference, as set out below.
346 The IEKWSB and each of its members will be guided by principles of transparency, open communication,
347 good faith, accountability, timeliness and respect, and will work inclusively, collaboratively, and with a
348 positive spirit of cooperation.

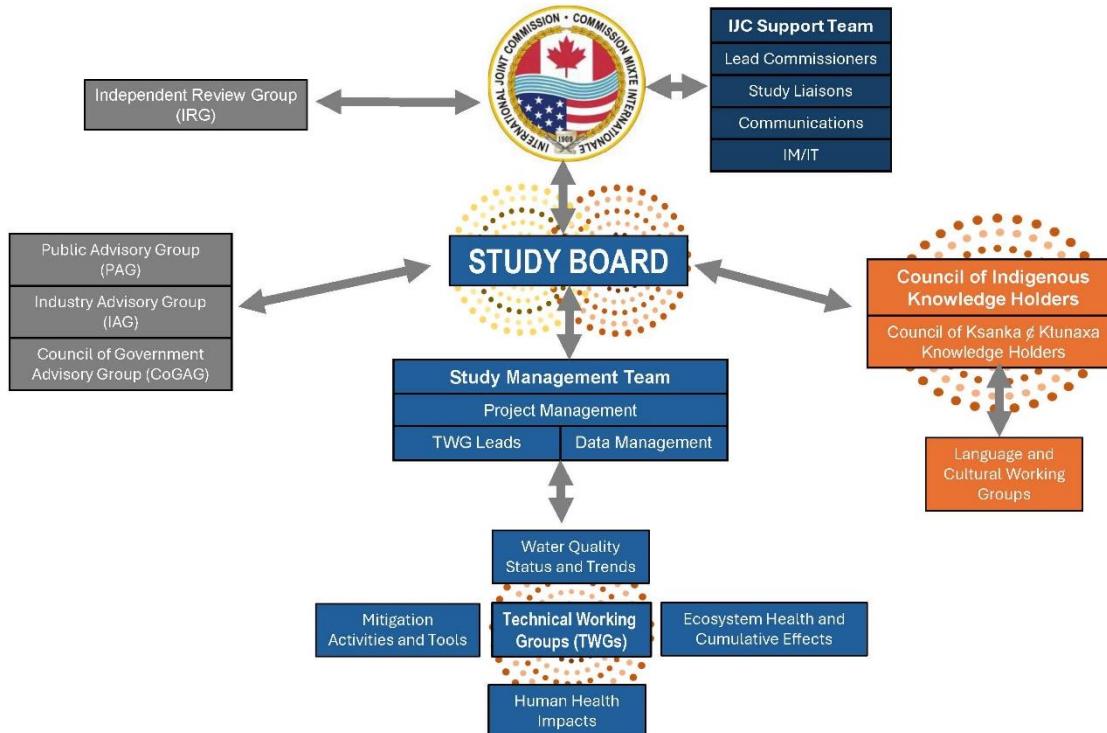
349 To achieve this objective, the Reference and Directive outline the following duties for the IEKWSB. The
350 IEKWSB will:

- 351 1. Conduct transparent and coordinated transboundary data and knowledge sharing; share,
352 synthesize, and analyze data and information to support a common understanding of pollution
353 within the Elk-Kootenai/y watershed and the impacts of that pollution on people and species;
354 and report and recommend in a transparent and publicly available format on the following
355 matters:
 - 356 a. The best available observational data, scientific research, and Indigenous knowledge
357 regarding influences on, sources of, status of, and trends in pollution in water and
358 associated effects on ecosystem health, which could include but is not limited to fish and
359 aquatic life, wildlife, human health, and cultural uses in the Elk-Kootenai/y watershed;
 - 360 b. Data and research gaps, assumptions and uncertainties including any factors affecting
361 data accessibility and comparability, such as data types and collection and reporting

- methods relevant to improving understanding, measurement, and monitoring of the matters reviewed by the IEKWSB;
- c. Recommendations for strengthening, coordinating, and prioritizing efforts on data sharing and transparency, science, monitoring and research, and inclusion of Indigenous knowledge, and other next steps and recommended actions on the matters reviewed by the IEKWSB;
- d. A synthesis of the available data and scientific information and a resulting understanding of the water quality issues in the Elk-Kootenai/y watershed including contaminants of concern, areas, and water and ecological resources affected; and
- e. Methods and procedures for ongoing monitoring and data analyses to further define the extent of pollution and identify trends in concentrations of contaminants in the watershed.

2. Where directly relevant and necessary to address 1(a) – 1(e) above, report and recommend on governance and decision-making, including the implementation of its recommendations.

3. Conduct Broad Engagement: Consistent with the March 8, 2024, Reference to the Commission, the IEKWSB is expected to draft and implement an engagement plan that includes engagement with federal, provincial, state, First Nations, Métis, and Tribal governments, industry, local communities, organisations, the public and others who live, work or have interests in the watershed. The overarching goal is to build relationships and seek, document and consider the resulting input and perspectives in assessments, conclusions and recommendations, as appropriate.


4. The SB will provide:

- a. a Phase 1 Plan of Study for conducting the study to the Commission including a detailed schedule and proposed budget for the studies and tasks to be undertaken, as well as an engagement plan.
- b. an Interim Report in September 2025, which will include, at a minimum, a summary of achievements, IEKWSB and working groups activities, independent peer review, communications/engagements with the public, Indigenous collaboration, study timeline and expenditures, looking forward, and issues requiring Commission advice and guidance.
- c. a Final Report in September 2026, which will consist of reporting and recommendations on the matters that were studied, and a summary of public engagement. It will also include a Phase 2 Plan of Study recommending potential future work, including public engagement and how and by whom this future work should be conducted and associated cost.

5 Organization of the Study and Governance Structure

On September 26, 2024, the Commission provided the IEKWSB with a detailed [Directive](#) which among other things, recommended a proposed governance structure for the study. Study governance will be the key to successful efforts on behalf of the Board (Figure 2). Active engagement from various interests in the watershed, including government entities that have responsibilities for water management in the basin, is necessary to ensure project success. The IEKWSB has adopted the proposed governance structure and has begun implementing it with the help of the Commission. The following sections, largely summarizing information in the Directive, describe the various components of the governance

405 structure. All members of the Study, **including** IEKWSB members, Study Management Team members,
 406 and Technical Working Group members are expected to serve the Commission in the best interest of the
 407 watershed and in their personal and professional capacities, and not as representatives of their
 408 respective countries, communities, agencies, organizations, or any other interests and affiliations.

409

410 *Figure 2. Governance Structure for the International Elk-Kootenai/y watershed Study. The circle illustrations have*
 411 *been modified from Ryder et al. (2020).*

412 5.1 IEKWSB (Study Board)

413 The IEKWSB reports directly to the Commission but maintains objectivity and independence in
 414 conducting its work to report its findings and recommendations. The Commission provides oversight of
 415 the IEKWSB, assuring adherence to the Reference and this Directive. The IEKWSB is separate and
 416 independent from the other structure set out in the Reference, the Elk-Kootenai/y Governance Body
 417 (Governance Body).

418 The members of the IEKWSB are:

- 419 • Tom Bansak, University of Montana, United States Co-Chair,
- 420 • Oliver Brandes, University of Victoria, Canadian Co-Chair,
- 421 • Vi Birdstone, Paqamnik, Ktunaxa Nation member,
- 422 • Kelly Munkittrick, University of Calgary, Canadian member,
- 423 • Stella Swanson, Environmental Consultant, Canadian member,
- 424 • Clayton Matt, Tribal Resource Management, retired director, Confederated Salish and Kootenai
 425 Tribes member,
- 426 • Rich Di Giulio, Duke University, retired, United States member,

427 • Jill Frankforter, US Geological Survey, retired, United States member.

428 IEKWSB members will prioritize the work of the IEKWSB to ensure that it will function effectively and
429 efficiently, make best efforts to attend all meetings, be familiar with the contents of this Directive and
430 the Reference to the Commission, and review relevant information to ensure they are fully prepared to
431 participate in meetings. If there is a critical gap in the composition of the IEKWSB, the IEKWSB may
432 communicate this to the Commission.

433 **5.2 IEKWSB Co-Chairs**

434 The IEKWSB Co-chairs will convene and preside at all meetings of the IEKWSB and will jointly take a
435 leadership role in planning and implementing the IEKWSB's mandate, including facilitating the IEKWSB's
436 deliberations on its work, and securing consensus of the IEKWSB on its findings and recommendations.
437 In the case that one of the IEKWSB Co-chairs cannot attend a meeting, that Co-chair will designate
438 another IEKWSB member to assume the role for that specific meeting.

439 **5.3 Council of Indigenous Knowledge Holders**

440 As per the Directive, the IEKWSB will regularly consult with a Council of Indigenous Knowledge Holders
441 (CoIKH) comprised of members from Indigenous Nations (which may include Tribal, First Nation and
442 Métis) throughout the entire Study, to ensure that knowledge relevant to the Reference is requested,
443 shared, synthesized, analyzed, and fully considered in the work of the IEKWSB. To help with this
444 engagement of information, knowledge, and ideas, at least one of the IEKWSB members will sit on the
445 CoIKH.

446 A Council of Ksanka \notin Ktunaxa Knowledge Holders (CoKKKH), has been appointed by the Commission's
447 U.S. and Canadian Secretaries. Members were invited from each of the six Ktunaxa Nation governments.
448 If needed, other Councils of Indigenous Knowledge Holders composed of members of other Tribal, First
449 Nation, and Métis groups may also be formed as the study proceeds.

450 The circular structure in Figure 2 reflects the iterative and connected nature of knowledge, which is
451 foundational to the Ksanka \notin Ktunaxa stewardship responsibility for $\text{?a}\cdot\text{kxam?is qapi qapsin}$ (All Living
452 Things). Ksanka \notin Ktunaxa ?aq?smakn?k (people) have occupied Ktunaxa ?amak?is for more than 10,000
453 years. Through the significant and ongoing impacts to $\text{wu?u} \notin \text{?amak?is}$ (water and lands) impacts to
454 $\text{?a}\cdot\text{kxam?is qapi qapsin}$ have occurred. As part of the covenant made with the Creator, Ksanka \notin Ktunaxa
455 continue to be a voice for those who cannot speak for themselves – the four legged, the winged, the
456 ones who crawl on the ground and swim in the waters – in upholding the responsibility given by the
457 Creator to safeguard $\text{?a}\cdot\text{kxam?is qapi qapsin}$ for future generations. This is part of the Ktunaxa role and
458 responsibility throughout ?amak?is Ktunaxa, to steward $\text{wu?u} \notin \text{?amak?is} \notin \text{?a}\cdot\text{kxam?is qapi qapsin}$ by
459 continuing to honor relationships in the ways that have been taught generation upon generation.

460 **5.4 Study Management Team**

461 The Commission appointed a six-person Study Management Team (SMT) to assist the IEKWSB in
462 delivering its mandate. The SMT will work under the direction of the Study Co-chairs, will participate in
463 every IEKWSB meeting, and will remain fully aware of the IEKWSB's ongoing work. The SMT will maintain
464 financial, travel, and other records as may be necessary to document the contributions of those involved
465 in this work. The SMT will also oversee the Technical Working Groups (TWGs), provide logistics and lead
466 the Study Board's communications and engagement processes, and be responsible for knowledge and

467 data management for the duration of the Study. SMT members are not IEKWSB members. The SMT is
468 responsible for developing meeting agendas in collaboration with the Study Board Co-chairs, posting
469 meeting minutes and other relevant information to the Commission's website and social media
470 platforms, and tracking public discussion. The IJC will provide technical and other support to the SMT
471 members in fulfilling their duties.

472 Two-person sub teams of the SMT will be assigned to the following tasks:

473 Project Management – Two SMT members, one from Canada and one from the United States (hereafter
474 Project Managers), will be responsible for assisting the IEKWSB on delivering its mandate. The Project
475 Managers will work under the joint direction of the co-chairs of the IEKWSB and will keep fully abreast of
476 the work of the different groups, and function as liaisons between the IEKWSB and those groups. The
477 SMT Project Managers will be responsible for the effective management of the IEKWSB's Phase 1 POS.
478 The SMT Project Managers are responsible for communicating to the different groups the direction of
479 the IEKWSB and assisting in general administrative support (e.g., meeting set-up; travel; administrative
480 and contract matters; coordination of various teams and tasks; maintenance of digital files and
481 repositories including SharePoint file systems; meeting minutes, documentation of study activities,
482 distribution of study products; and providing briefings to the IEKWSB on tasks and topics identified by
483 the Co-Chairs).

484 Technical Working Group Oversight – Two SMT members, one from Canada and one from the United
485 States (hereafter TWG Liaisons/Leads) will serve as IEKWSB Liaisons with TWGs and the CoIHK,
486 coordinating and supporting activities of Working Groups, helping TWGs develop workplans and
487 ensuring workplans are completed withing agreed timelines and budgets. The TWG Liaisons/Leads will
488 provide a direct line of communication between the IEKWSB and the TWGs and will provide technical
489 guidance and support to the IEKWSB. Specific tasks include:

- 490 • Reporting to the Board and IJC regarding TWG activities and progress;
- 491 • Assisting the direction of TWG work based on the Board's request for information;
- 492 • Supporting the development of and reviewing all TWG documents;
- 493 • Attending all TWG meetings to provide overall study information and support meetings with
494 meeting facilitation and note taking;
- 495 • Coordinating TWG assignments, communication, and facilitating inter-TWG communication;
- 496 • Providing general GIS support to all TWGs as needed.

497 Data Management – Two SMT members, one from Canada and one from the United States (hereafter
498 Data Managers) will work with TWGs to ensure their data storage and acquisition needs are met,
499 including planning and implementing long-term archiving of Study products and associated datasets.
500 Specifically, the Data Managers will oversee data management, including the development of a data
501 policy, Data Management Plan, and associated templates. This role includes ensuring that protocols for
502 working with data obtained from outside the study are followed. They are also responsible for
503 management and stewardship of Indigenous knowledge and data.

504 It is expected that the IEKWSB will store all digital data and files, including models, working files, etc. on
505 the IJC SharePoint websites to manage, protect and preserve all Study data throughout the Study period.

506 5.5 Technical Working Groups

507 The IEKWSB will establish Technical Working Groups (TWGs) to assist the Board in carrying out the work
508 under its Directive within the Kootenai/y watershed (i.e., sources of, status of, trends in, mitigation
509 efforts and efficacy), and the impacts of that pollution on human and ecosystem health (i.e., human
510 well-being, cultural uses, fish/aquatic life, wildlife)(Section 7). TWG members are appointed by the
511 IEKWSB and reflect a diversity of membership to ensure that they can address all relevant dimensions of
512 the work required under the Directive.

513 Through the SMT, the IEKWSB will ensure that the TWGs have clear direction as to the scope of their
514 work, have ongoing opportunities to provide their advice to the IEKWSB, and that communication
515 amongst TWGs is regular and consistent to ensure all recommendations and advice are informed by each
516 other's expertise. The IEKWSB should also provide opportunities for all TWGs to hear the views of the
517 other TWGs, where relevant, and provide opportunities for engagement with the Council of Indigenous
518 Knowledge Holders.

519 6 Engagement

520 Throughout the Study, the interests and perspectives of the public, stakeholders, Indigenous Nations and
521 their members, basin communities (rural and urban), and appropriate local, State/Provincial, Federal
522 government agencies will be actively sought to contribute hydrological, ecological, socio-economic, and
523 other relevant information and data to the Study to foster dialogue, communication, and participation at
524 all levels, in both Canada and the United States.

525 The IJC and the IEKWSB are committed to providing all interested parties with convenient opportunities
526 to be heard, as required in the Boundary Waters Treaty. The IJC emphasizes the importance of public
527 outreach, consultation and participation, and promotes policies and programs that enable community
528 input in the water management decision-making process to meet the needs of all stakeholders and
529 rights holders. Such broad engagement includes the general public and must be driven by the concept
530 that IEKWSB members, and members of associated committees and groups, participate and
531 communicate objectively and independently of their native countries and organizations.

532 The IEKWSB is developing an Engagement Plan with IJC Communications staff, as required by the IJC's
533 Directive to the IEKWSB. The Engagement Plan is a living document that will be regularly updated on the
534 IEKWSB website. All public engagement is required to be reviewed by IJC Technical and Communications
535 staff and approved by the IEKWSB. A key goal with broad engagement of diverse peoples and sectors is
536 to ensure the management of the Elk-Kootenai/y watershed will meet the needs of all stakeholders and
537 rights holders. The IEKWSB does not pre-suppose what will be needed to meet these needs and what
538 other criteria are considered balanced and fair, but the IEKWSB does seek to develop an understanding
539 of factors considered during evaluation of trade-offs.

540 6.1 Engagement Objectives

541 The IEKWSB will provide opportunities for direct in-person or virtual engagement with federal,
542 provincial, state, Tribal and First Nation governments, industry, local communities, organizations, the
543 public, and others who live, work or have interests in the watershed. In addition, the Study Board will
544 provide opportunities for more general ongoing communication for those that wish to remain informed
545 about the study.

546 6.1.1 Engagement Principles

547 Participation in the study will be driven by the following key objectives:

- 548 • Strive to ensure that the study process is open, inclusive and fair;
- 549 • Make the public aware of the study, its purpose, and process, including how decisions will be made;
- 550 • Provide opportunities to all interested parties to participate;
- 551 • Enhance public understanding of sources, trends, and effects of water pollution in the Elk-Kootenai/y watershed;
- 552 • Inform the study by identifying and building on local expertise, knowledge and information;
- 553 • Invite and consider the views of all interests of the principal issues;
- 554 • Identify and consider the public's, industry's, and government's priorities and preferences in the plan formulation;
- 555 • Broadly disseminate study findings as they become available; and
- 556 • Encourage the public as well as industry and government representatives to share study findings with others.

561 6.1.2 Engagement Methods and Approaches

562 The IEKWSB will invite comments about specific or general issues associated with the study as well as 563 provide opportunities for all people with interest to express their views and provide data of their 564 interests in respect of the study. The IEKWSB will use several important means for participation and 565 outreach. These include public meetings, which will be held at least once in each country per year, either 566 virtual, in person or both. In order to inform and provide context for the technical investigations 567 associated with the study, the public will be consulted at the beginning of the Study to identify the 568 public's views on the principal issues, questions of interest, study objectives, acquire any available 569 knowledge in the form of historical data, anecdotal information, and identify existing or future plans, 570 activities and initiatives that may relate to improving water quality in the watershed.

571 The IEKWSB may engage with the public in a variety of ways, including but not limited to listening 572 sessions and open houses, community meetings, and webinars, as well as various methods of digital 573 communication including social media, press releases, newsletters and videos posted to the IEKWSB 574 website (www.ijc.org/elk).

575 Engagement will also enlist the assistance of Advisory Groups to provide an opportunity for specific 576 interests and information to be heard by the IEKWSB throughout its deliberations.

577 6.2 Advisory Groups

578 Advisory Groups form a critical part of the study process. In addition to informing the study, the Advisory 579 Groups will be a forum for interested parties to learn about the Study Board's activities and to offer their 580 input, knowledge, insights, and perspectives.

581 The SMT, on behalf of the IEKWSB, will ensure that the Advisory Groups have clear direction as to the 582 scope of their requested advice, have ongoing opportunities to provide their advice to the IEKWSB, and 583 that communication amongst Advisory Group members is regular and consistent to ensure all 584 recommendations and advice are informed by each other's expertise. The SMT will also provide an 585 opportunity for all Advisory groups to hear the views of the other Advisory Groups, where relevant. The

586 IEKWSB will regularly apprise the Commission of communications with Advisory Groups, but at a
587 minimum, the IEKWSB will document and present on its engagement and interactions with its Advisory
588 Groups at the semi-annual meetings with Commissioners.

589 The IEKWSB, in coordination with Commission staff, may establish and appoint members to additional
590 Advisory Groups as needed to carry out the work under the Directive. Members of Advisory Groups
591 should have a presence or connection in the watershed, except in cases where a member may be
592 appointed for their specialized knowledge or expertise, even if they do not have a presence or
593 connection in the watershed. Advisory Groups are not required to make decisions or reach consensus in
594 providing advice to the IEKWSB but must clearly present the areas of non-consensus to the IEKWSB for
595 their consideration and determination. Co-Chairs, one from Canada and one from the United States, will
596 direct each of the Advisory Groups. The IJC, with advice from the IEKWSB and SMT, established a Public
597 Advisory Group and an Industry Advisory Group to advise and report to the IEKWSB.

598 [6.2.1 Public Advisory Group](#)

599 Members of the Public Advisory Group (PAG), including co-chairs, are appointed by the Commission's
600 United States and Canadian Secretaries in consultation with the IEKWSB. The PAG is an important means
601 of engaging the public in the study on an ongoing basis and will consist of seven members from each
602 country representing key interests and geographic regions across the Elk-Kootenai/y watershed.
603 Interests represented include recreation, conservation, and environmental protection. PAG members will
604 have the opportunity to provide advice and input to the IEKWSB throughout the study's duration.
605 Membership of the PAG may be expanded in the future if the Study Board identifies gaps in the
606 representation of public entities.

607 The PAG members and the IEKWSB will seek to develop effective techniques to engage the public and
608 stakeholders on a wide range of issues. More specifically, the PAG will be asked to:

- 609 • Assist the IEKWSB and the Communications Committee in the implementation of the
610 Engagement Plan;
- 611 • Advise the IEKWSB on public consultation, involvement and information exchange;
- 612 • Serve as a conduit for public input and broad local knowledge and data input to the study
613 process;
- 614 • Serve as a conduit for public dissemination of study outcomes by sharing approved information
615 from the IEKWSB to their various networks throughout the community and continue the
616 dialogue by bringing back views from their communities for consideration by the IEKWSB;
- 617 • Review and provide feedback on IEKWSB approaches, reports, products, findings and
618 conclusions as requested; and
- 619 • Advise the IEKWSB on the responsiveness of the study process to public concerns.

620 [6.2.2 Industry Advisory Group](#)

621 Members of the Industry Advisory Group (IAG), including co-chairs, are appointed by the Commission's
622 U.S. and Canadian Secretaries in consultation with the SB. The IAG will offer representatives from various
623 industrial and commercial interests an opportunity to inform the study of their knowledge, insights,
624 data, and perspectives on possible water management options being considered. The IAG will include six
625 members from each country representing vested industries from the United States and Canada,

626 including mining, tourism, forestry, fisheries, commerce, and hydropower. It will provide advice,
627 feedback and guidance to the IEKWSB.

628 [6.2.3 Council of Governments Advisory Group](#)

629 The Council of Governments Advisory Group (CoGAG) will serve as the primary means for the IEKWSB to
630 engage governments that might be interested in or affected by the work of the IEKWSB. It will provide
631 local, state/provincial, federal, and Indigenous governments an opportunity to hear directly from the
632 IEKWSB about study progress and offer governments an opportunity to directly communicate with the
633 IEKWSB. The CoGAG will include members from each country representing various locally and regionally
634 relevant levels of government having relevant roles in the watershed. Members will include local and
635 state/provincial elected officials and employees of local, state/provincial, and federal governments.
636 Engagement will include, at a minimum, meetings to discuss the Study Board's penultimate draft Interim
637 and Final Reports.

638 [6.3 Communications](#)

639 The IEKWSB established a Communications Committee. The Committee includes at least one Board
640 member from each country, a member of the SMT from each country, IJC communications staff from
641 both Canada and United States, contracted technical writers, and contracted facilitators and perhaps co-
642 chairs of the Public and Industry Advisory Groups. The SMT members will co-chair the Communications
643 Committee. The Committee will ensure the Board's communications to Advisory Groups and the IJC are
644 consistent. The Committee will rely on help from IJC communications staff for contributions focused on
645 strategic design, planning, and creating communications products; establishing target audiences; and
646 scheduling and delivery of communications products. Additionally, IJC communications staff will help
647 with media outreach and media training. Communications Committee members will work on behalf of
648 the IEKWSB, not their home organizations.

649 [7 Technical Working Groups](#)

650 Technical Working Groups (TWGs) will be established to assist in carrying out the work under this
651 Directive to "*support a common understanding of pollution within the Elk-Kootenai/y watershed. This*
652 *includes the impacts of that pollution on people and other species.*" The TWGs will receive their scopes of
653 work from the IEKWSB and will regularly provide findings and advice to the IEKWSB. The IEKWSB will
654 ensure that there is regular and consistent communication among TWGs so there are opportunities for
655 integration and iteration of findings. TWGs will be formed by appointing a small group of experts
656 knowledgeable about a theme of concern in the Study Area, selected through an iterative process with
657 the IJC and the IEKWSB.

658 Initially, the following TWGs will be established to accomplish the technical work needed to support the
659 IEKWSB:

660

- Water Quality Status and Trends
- Impacts to Human Health and Well-Being
- Impacts to Ecosystems, Including Cumulative Effects
- Mitigation Efforts and Activities and Available Tools

664 TWG groups will be responsible for identifying cross-cutting issues relevant to many or all of these
665 themes such as possible roles of climate and climate change.

666 Upon formation, each TWG will be asked to prepare a workplan describing the tasks required to fulfill
667 their mission and associated funding, timelines, and products. Upon Board approval, each TWG will
668 implement the workplan with the support and oversight of the SMT to ensure their success.

669 **7.1 Principles for the TWGs**

670 Principles for the TWGs that will contribute to sound decision-making include:

- 671 **1. Recognition of the transboundary nature of the watershed.**
- 672 **2. Recognition that the Directive is the first Reference to the IJC that the two federal**
673 **governments have developed in partnership with First Nations and Indigenous groups:** it is
674 essential to include Indigenous knowledge, culture and language because Ktunaxa knowledge
675 contributes to our understanding of the accumulated watershed conditions, status and trends.
676 Uncertainties related to Indigenous knowledge will be led by the CoIKH and contribute to the
677 development of key questions.
- 678 **3. Development of key questions:** initial questions tasked to the TWGs in the POS are at a high
679 level, and the TWGs will need to formulate and formalize more specific questions, assign
680 boundaries to their tasks, and use formal uncertainty analysis and priority setting to focus their
681 work to accomplish the goals of the Directive within the very tight time frame provided. The
682 TWGs will need to have a clear understanding of a conceptual model to inform their work,
683 recognizing that there will be overlap and fluidity between TWGs, and there will need to be clear
684 communication between TWGs that will be assisted by the SMT.
- 685 **4. Assessment of data pertaining to the accumulated watershed condition or state:** the TWGs are
686 tasked with assessing the existing accessible data and information and evaluating whether
687 entities throughout the Study Area are measuring the right things in the right places at the right
688 time in order to achieve the Objectives in the Directive.
- 689 **5. Transparency through accessible, comparable, and quality-assured data:** TWG activities should
690 include evaluating the consistency of data and indicators, spatial and temporal boundaries,
691 adequacy of baseline data, spatial or temporal trends (including error limits), the existence, and
692 the adequacy and consistency of monitoring triggers or benchmarks.
- 693 **6. Relationships between environmental responses and system drivers (stressors):** TWGs should
694 include any existing studies or efforts to link observed impacts and specific stressors, causes, or
695 mitigation efforts. Key uncertainties lead to the identification of critical data gaps or data
696 insufficiencies.
- 697 **7. Identification of gaps and required enhancements to improve the characterization of the state**
698 **of the watershed and to understand cumulative effects:** TWGs should include information
699 required for the Study Board to make recommendations regarding governance and reduction or
700 mitigation of the impacts of water pollution in the watershed based on assessment of existing
701 data. Key uncertainties are those where information about important aspects influencing or
702 driving impacts or their potential causes is imperfect or lacking. A good example would be the
703 currently uncertain role of climate change as a current or future driver of the questions that
704 Technical Working Groups will consider. Key uncertainties are the basis for prioritization and will
705 guide the identification of recommendations for adjustments to the current monitoring (and

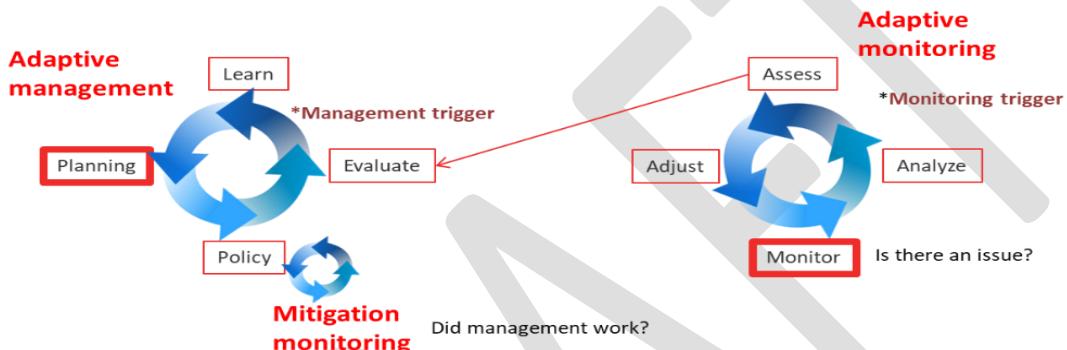
706 research) conducted in the Study Area. Recommendations for subsequent phases of the Study
707 would continue with further design development, implementation of monitoring to address
708 critical uncertainties and study questions, and evaluation of the new data collected during these
709 phases. Any Phase 2 work recommended would require a new reference if it **were** to be
710 conducted under the auspices of the IJC.

711 **7.2 TWG Framework**

712 The Directive tasks the Study Board to conduct transparent and coordinated data and knowledge
713 sharing, make recommendations, report on progress, and seek opportunities for collaboration. The
714 Study will result in the sharing, synthesis, and analysis of data and information to support a common
715 understanding of pollution in the watershed, and the impacts of that pollution on people and species.
716 Ultimately the Study Board will report and make recommendations on certain specified related matters.

717 The work of the TWGs will contribute to this by assembling, synthesizing, and assessing existing data,
718 studies, summaries, risk assessments, and well-being studies; and identifying gaps that need to be filled.
719 TWGs will be responsible for assembling and synthesizing data from a wide variety of sources, operated
720 by different agencies or groups, and communicated and stored in a wide variety of ways. The TWGs will
721 present the analyses and syntheses of data within their assigned and refined Objectives so that the
722 IEKWSB can accomplish the goals of the Directive.⁴

723 To aid in organizing, determining, and investigating potential study questions of the TWGs, the IEKWSB
724 has developed a framework based on adaptive monitoring to provide consistency in philosophy, key
725 terminology, approach, and perspectives for the Study. The IEKWSB recognizes that this Study is focused
726 on existing data, and that this Study's timeline does not provide enough time for new data collection and
727 adaptive monitoring to be implemented within the Study Area. However, the IEKWSB directs the TWGs
728 to assess existing data and knowledge, and the sufficiency and efficacy of ongoing monitoring efforts
729 through the lens of the adaptive monitoring framework articulated below. Using this approach could
730 help guide recommendations for effective future data gathering, monitoring activities, and mitigation
731 efforts; although this document does not at this point commit the IEKWSB to any particular outcomes.


732 This framework has been developed utilizing *adaptive monitoring* principles. The purpose of *adaptive*
733 *monitoring* is to provide the information required to make management decisions, including information
734 that contributes to information on cause(s) or severity of effects. Adaptive monitoring adjusts the
735 intensity, frequency, and focus of monitoring efforts in response to results in order to develop an
736 understanding of causes of changes. It is designed to confirm predictions or identify when unexpected
737 change is happening, and depends on predictions, or in the absence of predictions, on an assumption of
738 no regional impact. Adaptive monitoring is best utilized in an iterative design aimed at understanding the
739 effects of multiple stressors (including, but not limited to pollutants), analyzing and prioritizing
740 uncertainties in that understanding, and progressing towards understanding the cause(s) of accumulated
741 effects.

742 It is important to distinguish between approaches for adaptive management and adaptive monitoring.
743 All figures describing *adaptive management* have a monitoring phase, and monitoring in the context of
744 adaptive management cycles is an interpretation phase where data is collected on the consequence of a
745 policy, regulatory, or management change. This type of monitoring is focused on understanding the
746 effectiveness of mitigation, and for the purposes of this Study, will be called "*mitigation monitoring*". It

747 is focused on a specific mitigation action and specific endpoints that are known to have been impacted,
 748 and is trying to answer, "Did the management action work?" so that management can be adjusted if
 749 unsuccessful. Mitigation monitoring is best utilized when you think you understand the cause and
 750 indicators that would respond to an improved situation.

751 Adaptive monitoring and adaptive management are informed by the same data but serve different
 752 purposes (Figure 3).

753 There are different tiers of effort in adaptive monitoring, ranging from baseline and surveillance, through
 754 confirmation, to focused monitoring aimed at understanding the extent and magnitude of changes to
 755 the state of the watershed. "Investigation of cause" is usually research oriented. Once causes are
 756 established within an acceptable range of uncertainty, investigation of mitigation of those causes can
 757 proceed, which informs recommendations for management actions.

758

759 *Figure 3. Adaptive monitoring and adaptive management are driven by the same data, but adaptive monitoring*
 760 *influences monitoring decisions, and adaptive management influences management decisions. Mitigation*
 761 *monitoring is a subset of monitoring types that is focused on evaluating the success of management interventions.*
 762 *(Adapted from Somers et al., 2018).*

763 The monitoring data that will be assembled by the TWGs will come from a variety of types of monitoring
 764 programs designed for different purposes, including status and trends, baseline assessments, and
 765 mitigation monitoring, as well as performance monitoring and environmental effects monitoring. The
 766 intent of the framework is to facilitate clarity and communication within and across TWGs with respect
 767 to the compilation, consolidation, and assessment of results generated *within and across* the specific
 768 objectives listed in the Directive, as facilitated by the SMT. The framework will also facilitate the linkages
 769 between monitoring information, the development of recommendations, and decision-making. More
 770 details will be provided to TWG members at the onset of their assignments.

7.3 TWG Themes and Objectives

772 TWG themes were developed by the IEKWSB using a combination of emphasis from the Directive and
 773 collective knowledge held by the IEKWSB, SMT and IJC staff. TWG members will be supplied with a set of
 774 objectives and will need to complete those within a specified time frame and budget (see Section 11)
 775 and their work will be grounded in, and guided by, Indigenous Knowledge as determined by the CoIKH.
 776 While some of the TWG themes will have relatively well-developed points of commencement (e.g. Water
 777 Quality Status and Trends), others may require a more exploratory process to refine TWG objectives (e.g.
 778 Impacts to Ecosystems, Including Cumulative Effects).

779 [7.3.1 Water Quality Status and Trends](#)

780 **Objective 1.** Assemble and synthesize available hydrologic data, studies, reports and peer reviewed
781 science for the Elk-Kootenai/y watershed as related to water quality and pollutants.
782 **Objective 2.** Identify and describe the occurrence of pollutants/constituents of concern in the waters of
783 the Elk and Kootenai/y Rivers, Koocanusa Reservoir, and Kootenay Lake including sources and trends in
784 concentrations and loads of these pollutants.
785 **Objective 3.** Identify relationships between hydrologic and water-quality data, including the
786 identification of gaps in the data and research. Recommend procedures for screening credible data;
787 statistically describing and reporting on the status of pollutants in the Study Area including associated
788 uncertainty; coordinating collection and analysis of new data to fill gaps; and suggesting next steps
789 (including methods and procedures for ongoing monitoring and data analysis).

790 [7.3.2 Impacts to Human Health and Well-Being](#)

791 **Objective 1.** Identify known or suspected human-health hazards from currently identified pollutants in
792 the Study Area. Expand this analysis to include any additional pollutants/constituents of concern
793 identified by the Water Quality Status and Trends TWG.
794 **Objective 2.** Assemble and review existing risk assessments and well-being studies and synthesize to
795 report an assessment of risk using current information. Report on health and well-being including
796 perceived and measurable threats to health based on culture.
797 **Objective 3.** As discussed in the POS preamble, identify high-priority data gaps in health-related
798 information needed to fully meet objectives 1 and 2 based in uncertainty analyses and provide
799 recommendations on approaches to gather additional information to fill these gaps.

800 [7.3.3 Impacts to Ecosystems, Including Cumulative Effects](#)

801 **Objective 1.** Develop a conceptual model focusing on identified pollutants but also identifying other key
802 linkages that need further study. Identify terrestrial and aquatic features that are affected or potentially
803 affected by identified water pollutants and other stressors in the Study Area.
804 **Objective 2.** Report on knowledge status of data for each component with respect to measured impacts
805 attributable to water pollution.
806 **Objective 3.** As discussed in the POS preamble, identify high-priority data gaps in ecosystem impacts
807 analyses (including cumulative effects) that would need to be filled to fully meet objectives 1 and 2
808 based on uncertainty analyses and recommend a set of prioritized studies to address gaps.

809 [7.3.4 Mitigation Efforts and Activities and Available Tools](#)

810 **Objective 1.** Identify, assemble and review data and information about implemented and planned
811 mitigation and remediation efforts, including techniques (e.g., best management practices) and
812 technologies related to water pollution from known sources (including forestry, industry, land
813 development, mining, and other identified sources of stressors) in the Study Area.
814 **Objective 2.** Assess efficacy, effectiveness, and sustainability of past and ongoing water pollution
815 mitigation efforts in the Study Area and determine if there are identified viable methods being used
816 outside of the Study Area.
817 **Objective 3.** Compile and examine existing regulatory standards for water pollutants in the Study Area,
818 including how they were developed. Identify if/where there are discrepancies between jurisdictions,
819 if/where there are exceedances, and determine if there are opportunities to harmonize regulatory

820 frameworks across jurisdictions, while respecting the legal authorities and jurisdictions of each
821 Government.

822 [**7.4 Interaction between the Council of Ksanka & Ktunaxa Knowledge Holders and the Technical
823 Working Groups**](#)

824 Currently, the only Council of Indigenous Knowledge Holders formed to support the IEKWSB is the
825 Council of Ksanka & Ktunaxa Knowledge Holders (CoKKKH). The CoKKKH share that Ktunaxa knowledge
826 and language is all-encompassing, and therefore cross-cutting all of the TWG themes and objectives.
827 *?a-kxařnis qapi qapsin*, the Ktunaxa belief in *all living things*, expresses this interrelatedness and that
828 culture, language and knowledge are ubiquitous. Given that Ktunaxa Knowledge and Language flows
829 through all TWG themes, the recommendation from the CoKKKH is that there be interaction across the
830 CoKKKH and each of the TWGs and the option for support from Ktunaxa staff as needed and available
831 within the TWGs. In addition, the CoKKKH has suggested that although there is not likely capacity within
832 the Ktunaxa Nation to sit on all TWGs, the CoKKKH will meet periodically with the IEKWSB, and SMT
833 liaisons to the CoKKKH, to ensure consistent and iterative engagement throughout the development of
834 the TWG membership and questions that each TWG will address. Through consistent and iterative
835 engagement and discussion with the CoKKKH, the IEKWSB will ensure that Ktunaxa oversight, voice, and
836 principal values are represented. In addition, both the IEKWSB and CoKKKH have requested that the
837 option remain to develop a TWG specific to Ktunaxa Knowledge and Language should there be a need
838 for this. If additional Councils of Indigenous Knowledge Holders are formed during the study, similar
839 efforts will be made to incorporate their knowledge and perspectives into the work of the IEKWSB.

840 [**8 Data Management Approach**](#)

841 There are wide variety of data management initiatives that exist within the watershed, and for data from
842 the watershed. Some examples include current data assembly, synthesis and interpretive work being
843 conducted by groups such as the Flathead Biological Station, the Elk River Watershed Monitoring
844 Collaborative, the Columbia Basin Water Hub, United States Geological Survey (USGS), US Army Corps of
845 Engineers, etc. It will be critical that TWGs become familiar with, and evaluate fully, the work of these
846 groups early in the process to help prevent "reinventing wheels" and leverage existing work.

847 The Data Management Plan defines the framework and protocols to ensure that all data collected,
848 processed, generated, curated, archived, or utilized by the Study and the IEKWSB is secure, authoritative,
849 well-documented, and accessible for long-term use. The DMP offers clear guidance for managing both
850 existing data and all customized or unique datasets and data products created during the Study. Aligned
851 with IJC data archiving practices, the DMP promotes data discoverability, quality, and usability for Study
852 participants and the broader user community. The Study will prioritize the use of openly available data,
853 except for data subject to confidentiality agreements with partner organizations. The DMP also respects
854 the intellectual property rights of data originators, ensuring proper credit through authorship, citation,
855 or acknowledgment. All data will adhere to Federal Geographic Data Committee/International Standards
856 Organization (FGDC/ISO) Data Standards as stated in the IJC Data Management and Geospatial Policy.
857 The DMP is a living document, updated as necessary to maintain relevance and effectiveness.

858 The IEKWSB holds primary responsibility for the development, maintenance, and oversight of the DMP,
859 with direct support from a dedicated Data Management Team (DMT). The DMT manages and approves
860 updates, ensuring alignment with Study objectives.

861 Data sensitive to the Ktunaxa Nation will be managed as directed by Ktunaxa knowledge holders in
862 accordance with the IJC Data Management and Geospatial Policy.

863 Key elements of the DMP include protocols for internal data sharing during the Study and public data
864 access after its completion. It establishes clear procedures for data and metadata preparation, defines
865 the role of the data management system, and ensures the quality, discoverability, and availability of all
866 project datasets and products. The DMP also supports short- and long-term data archiving, timely
867 information sharing, and adherence to IJC Data Policy objectives. These measures ensure that data
868 remains a valuable, accessible resource for researchers, decision-makers, and stakeholders in the Elk-
869 Kootenai/y watershed.

870 [9 Study Technical Reviews](#)

871 Three general levels of study review will be used to assure technical quality of the activities:

- 872 • Internal review by the IEKWSB and CoIKH;
- 873 • Agency technical review of models and reports produced by federal or state/provincial
874 agencies and provided to Technical Working Groups;
- 875 • Independent external reviews conducted by an Independent Review Group (IRG).

876 Reviews will be scalable to the content of each component of the study, deliberately included as part
877 of the study process throughout the life cycle of the study (scoping, interim products, and final
878 products), and concurrent with recommendations to include previous work in the study and
879 completion of new study phases/products from each contributing agency/contractor and the IEKWSB.

880 [9.1 Internal Review](#)

881 The IEKWSB will conduct a preliminary review of existing/completed products and their associated
882 documented peer and independent reviews. This review can be done by the IEKWSB or Technical
883 Working Groups of the Board. These reviews will ensure consistency and coordination across all
884 study components.

885 [9.2 Agency Technical Review](#)

886 Some of the products needed or produced by members of Technical Working Groups may require
887 the review and approval of agencies before release to the IEKWSB. Agency technical and approval
888 reviews are internal quality control processes performed within agencies by supervisors, senior staff,
889 peers and others within agencies or in some cases (USGS) by outside peers. The Board recognizes
890 the value of these processes and the independent reviews that characterize these processes in many
891 agencies. Technical Working Groups should anticipate these reviews and account for them when
892 establishing deadlines for delivery of products by agencies.

893 **9.3 Independent Review Group (IRG)**

894 The Independent Review Group (IRG), appointed by the IJC, will provide independent technical review
895 and documentation of appropriate Study components and documents produced jointly during the Study
896 process. The IRG, while appointed by the IJC, will operate independently outside the control of the IJC
897 and the IEKWSB. Independent peer review is key to improving the quality of work in studies and the IRG
898 will undertake interim reviews as well as the final reviews to facilitate early checks on methods and
899 assumptions early, thus reducing the risk of late-stage issues for the study. An example of an interim
900 review would involve the IRG in a review of the State of Knowledge documents prepared by each TWG.

901 An IRG review will be completed on all recommendation and implementation documents and specific
902 study products identified as fundamental to making those recommendations. For other products, the
903 IRG will receive documentation of existing reviews, with background documentation and
904 recommendations for targeted reviews as may be needed. The IRG can subsequently request a
905 review or other additional reviews of these products at their discretion.

906 **10 Study Board Deliverables**

907 As required by the Directive, the IEKWSB will provide the IJC with an interim report on its progress in
908 September 2025 and a final report in September 2026 which will include a Phase 2 Plan of Study to
909 follow up on this initial study.

910 **11 Budget and Timelines**

911 The budget for each group of tasks planned by the IEKWSB is shown in Table 2 and reflects the needs
912 associated with

- 913 • The high levels of investment for Indigenous engagement and participation because the “Study
914 to Address Transboundary Water Pollution in the Elk-Kootenai/y watershed” is the first
915 Reference to the IJC that the two federal governments have developed in partnership with First
916 Nations and Indigenous groups;
- 917 • An accelerated timeline, which requires increased levels of funding to enable the TWGs to
918 function and achieve their objectives over a shorter time period, and
- 919 • The increased costs for data management coordination amongst the multiple and extensive data
920 repositories currently in existence within the watershed.

921 The POS will likely be revised as the Study progresses, the scope of work is modified, stakeholders and
922 public inputs are provided, funding levels are determined and results become available.

923 The IEKWSB anticipates several feedback loops related to engagement, input, and questions provided by
924 the CoKKKH, Advisory Groups, the public, and other interested parties. The overall timeline for the TWG
925 efforts may change as the questions, engagement-led discussions, and initial findings are assessed; and
926 the required time to revisit or refine individual TWG outcomes are determined.

927

928 *Table 2- Budget, activities required to meet the IJC Directive to the International Elk-Kootenai/y Watershed Study*
 929 *Board.*

Activity or TWG	Requested Funding
General Engagement/Communications	\$250,000
Indigenous Engagement – Council of Indigenous Knowledge Holders Support	\$350,000
Study Management	\$1,350,000
Data Management	\$250,000
Travel	\$300,000
Total Study Activities Request	\$2,500,000
Water Quality Status and Trends TWG	\$600,000
Ecosystem Health TWG	\$600,000
Human Health TWG	\$600,000
Mitigation TWG	\$600,000
TWG Funding Request	\$2,400,000
TOTAL STUDY REQUEST	\$4,900,000

930 [**12 References**](#)

931 Chaffin, B.C., A.K. Fremier, B. Cosen, and R.K. Craig. 2024. Chapter 20 - Multi-scale and multi-level
 932 dynamics shape the resilience and sustainability of the Columbia River Basin, USA. p. 405-424, In
 933 Resilience and Riverine Landscapes (M. Thomas and I. Fuller), Elsevier Press,
 934 <https://doi.org/10.1016/B978-0-323-91716-2.00017-0>

935 Chisholm, I., M.E. Hensler, B. Hansen, and D. Skaar. 1989. Quantification of Libby Reservoir Levels
 936 needed to maintain or enhance reservoir fisheries. Methods and Data Summary 1983-1987. Project
 937 number 83-467 for Bonneville Power Administration
 938 (https://web.archive.org/web/20201103090257id_<https://www.cbfish.org/Document.mvc/Viewer/12660-5>)

939

940 International Columbia River Engineering Board, 1959. Report to the International Joint Commission
 941 United States and Canada – Water Resources of the Columbia River Basin – Appendix II – Kootenay
 942 Basin.

943 Knudson, K. 1994. Water quality status report. Kootenay (Kootenai) River Basin, British Columbia,
 944 Montana and Idaho. Prepared for The Kootenai River Network. State Documents Collection, Helena,
 945 Montana (https://archive.org/stream/waterqualitystat70knud/waterqualitystat70knud_djvu.txt)

946 Ryder, C., T. Mackean, J. Coombs, H. Williams, K. Hunter, A.J.A. Holland & R.Q. Ivers (2020): Indigenous
 947 research methodology – weaving a research interface. International Journal of Social Research
 948 Methodology 23 (3), 255–267 DOI: 10.1080/13645579.2019.1669923

DRAFT PLAN OF STUDY

949 Somers, K.M., B.W. Kilgour, K.R. Munkittrick, T.J. Arciszewski. 2018. An adaptive environmental effects
950 monitoring framework for assessing the influences of liquid effluents on benthos, water, and
951 sediments in aquatic receiving environments. Integr. Environ. Assess. Managem. 14: 552-566
952 DOI:10.1002/ieam.4060

953 Stickney, E., L. Kunza, G. Hoffman, and K. Chowanski. 2021. Small land cover changes in the
954 transboundary Kootenai River basin greatly alter water quality. Rivers Research Applications 37: 605-
955 614. <https://doi.org/10.1002/rra.3783>

956

957

DRAFT